Abstract
Core material softening method has been widely used in two-dimensional tunnel excavation simulation by the combined finite-discrete element method (FDEM). In numerical studies, softening stress paths (generally described by critical kinetic energy (CKE), softening time step (STS) and softening curve (SC)) usually have a significant influence on simulation results and computational efficiency. There is not a direct way to determine these three parameters. In the present study, a series of numerical studies by the FDEM are performed to discuss the effects of these three parameters on the simulation results and calculation efficiency in a circular tunnel excavation project with a 4 m diameter. The results show that the CKE is closely related to the model size and rock density. The CKE can be obtained from the model kinetic energy curve, and a selection method is proposed. The STS value of 50 000 steps is optimal. To obtain a uniform and stable propagation process of the surrounding rock crack, the SC should be in an exponential function. The engineering case shows that the simulation results are consistent well with the field observations as the softening stress paths are calibrated by the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.