Abstract

Passenger safety is one of the main goals of railway tunnels design, being the evacuation of a burning train one of the worst scenarios, where any delay to start the evacuation is crucial for passenger’s survival. Previous research works have separately studied the evacuation of railway tunnels due to fires and the effect of tunnel slope on gas and smoke spread, but none of them has addressed both factors together. In this work, we developed a quantitative approach to assess the time delay to start the evacuation, depending on the tunnel slope. The methodology is based on statistical analysis of simulation results. The proposed model, based on linear multiple regression with an R-square value close to 90%, explains the number of fatalities as a function of the time delay to start the evacuation and the tunnel slope. The statistical model used in this study predicts more than one fatality for each second of delay in starting the evacuation. Moreover, tenable conditions for safe evacuation in case of fire cannot be easily guaranteed in inclined tunnels with more than 1 km length and natural ventilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.