Abstract

Blends of an electron donor, i.e. a regioregular poly(3-hexylthiophene) (P3HT), with electron acceptors, a series of soluble quinquethiophene-S,S-dioxides (T5Os) bearing different alkyl side groups were self-assembled at surfaces. Scanning Force Microscopy (SFM) studies revealed that while the T5O symmetrically functionalized with two hexyl groups in the central thiophene (1) self-organizes into micrometer sized crystals embedded in a grainy matrix of P3HT, by substituting the central thiophene of 1 with one hexyl and one methyl unit (2) smaller and less anisotropic crystals of the acceptor having a sub-micrometer scale size were formed. The generation of these crystals is due to the joint effect of different non-covalent intermolecular interactions between the T5Os that self-segregate from the P3HT. By derivatizing the compound 1 with cyclo-hexyl moieties in the four external thiophenes molecule 3 was obtained. Such system was found to assemble into grainy disordered structures when co-deposited with P3HT, providing evidence for the absence of a phase segregation between the two components. Generally, the self-assembly at surfaces is governed by the interplay of intramolecular as well as intermolecular and interfacial interactions. In the present case, the cyclo-hexyl side groups in 3 both induce an intramolecular loss of planarity of the thiophene rings and hinders intermolecular interactions, reducing the tendency of the molecules to self-associate forming large crystals, whereas the symmetrical functionalization of the two central thiophenes with hexyl chains favours the crystallization of the T5O. The reported results demonstrate that subtle differences in the chemical functionalization can lead to different types of molecular architectures at surfaces. This is of importance since controlling the self-organization of pi-conjugated molecules at surfaces towards pre-programmed assemblies is a viable approach to enhance their electronic and luminescent properties, which should help to improve the performance of organic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.