Abstract

The influence of selenium-vapor flow-rates in the microstructure and photovoltaic characteristics of Cu(In, Ga)Se2 films prepared using a solution coating process was investigated in this study. An increase in the flow rate of selenium vapor was shown to promote selenization reaction and the grain growth of Cu(In, Ga)Se2 films. As the selenium-vapor flow-rate was increased to 70 sccm, the crystallinity of the obtained films was significantly improved and the densified Cu(In, Ga)Se2 films were formed. Furthermore, the elevated gallium grading profile enhanced the effects of back surface field. Increasing the flow rate of selenium vapor to 70 sccm led to an increase in the Voc, Jsc, and FF values, and therefore enhanced the conversion efficiency of the resulting Cu(In, Ga)Se2 solar cell to 10.21 %. When the selenium-vapor flow-rate reached 90 sccm, the solar cell performance was deteriorated because the microstructure of Cu(In, Ga)Se2 films became porous. The present investigation reveals that the selenium-vapor flow-rate is crucial to improve the photovoltaic properties of Cu(In, Ga)Se2 solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.