Abstract

We investigate the influence of the seed of measurement on the performance of a Szilard engine based on a two-mode Gaussian state evolving in a noisy channel. Quantum work is extracted by performing a positive operator-valued measurement (POVM) on one of the two modes, after which this mode reaches equilibrium with the environment. As the seed of measurement, we use a single-mode squeezed thermal state. We employ the Markovian Kossakowski-Lindblad master equation to determine the evolution in time of the considered open system and the quantum work is defined based on the Rényi entropy of order 2. We show that the extracted quantum work and information-work efficiency strongly depend on the characteristic parameters of the system (frequency, average thermal photons number, and squeezing), the noisy channel (temperature and squeezing of the bath), and the seed of measurement (average thermal photons number and strength of the measurement).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.