Abstract
A salt-water flume was used to describe the mechanics of current flow around an articial Zostera marina meadow. Shear velocity and roughness height were positively correlated with seagrass surface area, and were positively/negatively correlated with current velocity. Current velocity intrusion into the meadow before diminution and maximum reduction (both at the 2 cm height line) proceed by factors of 1·25 and 2·07 cm into the meadow per cm s −1 of current velocity, respectively. Froude number was correlated with mean bending angle of the canopy as a whole. Maximum bending had occurred with Froude = 1, but most bending had taken place by Froude = 0·4, a velocity of 40–50 cm s −1 in this experiment. The meadow edge is the most dynamic zone of a seagrass meadow in regard to current flow. Bending of the shoot canopy is a mechanism for re-direction of current flow and in-canopy reduction of current velocity. Meadow dimensions may be regulated by scouring processes in different hydraulic regimes. Shoot bending and subsequent in-meadow current velocity reduction are mechanisms that affect self-shading and photosynthetic capabilities as well as providing habitat stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.