Abstract
There have been a number of publications on spar Vortex-Induced-Motions (VIM) model testing procedures and results over the past few years. All tests allowing full 6 DOF response to date have been done under sub-critical Reynolds Number conditions. Prior to 2006 tests under super-Critical Reynolds Number conditions had only been done with a fully submerged 1 DOF rig. Early in 2006, a series of Spar VIM experiments was undertaken in three different facilities: Force Technology in Denmark, the David Taylor Model Basin in Bethesda Maryland and UC Berkeley in California. The motivation of this work was to investigate the effect of Reynolds Number and hull appurtenances on spar vortex induced motions (VIM) for a vertically moored 6DOF truss spar hull model with strakes. The three series of tests were done at both sub and super-critical Reynolds Numbers, with matching Froude Numbers. In order to assess the importance of appurtenances (chains, pipes and anodes) and current heading on strake effectiveness, tests were done with several sets of appurtenances, and at various headings and reduced velocities. These experiments were unique and groundbreaking in many ways: • For the first time the issue of scalability of Spar VIM experiments has been addressed and tested in a systematic way. • For the first time the effect of appurtenances (pipes, chains and anodes) was systematically tested. • The model tested at the David Taylor Model Basin (DTMB) had a diameter of 5.8′ and a weight of 15,600 lbs. It is the largest spar model ever tested. Furthermore the DTMB tests series is the only supercritical spar VIM performed with a six degree of freedom (6DOF) rig. This paper describes the three model tests campaigns, focusing on the efforts made to ensure three complete geo-similar programs, and on the significant findings of these tests, effectively that the influence of Re is to add some conservativeness in the results as the testing scale is smaller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.