Abstract
Electrochemical oxidation of β-blocker atenolol (ATL, 100 ppm) at different applied current densities (33, 50 and 83 mA·cm−2) using a reactor divided by an ion-exchange membrane and an undivided one was investigated. Two types of anodes were used for this purpose: a boron-doped diamond (BDD) anode and new low-cost ceramic electrodes made of tin dioxide doped with antimony (Sb-doped SnO2). Degradation was assessed using a high performance liquid chromatography, while mineralization by measuring total organic carbon (TOC) dissolved in sample. Except for the lowest current density, ATL was completely degraded for both reactors and electrodes. The highest percentage of TOC eliminated (89%) was obtained at the highest applied current density with the BDD electrode in the divided reactor. The presence of the cation-exchange membrane prevented the reduction of both the electrogenerated oxidizing species and the oxidized organic compounds and enhances the electro-oxidation kinetic reaction.In order to study the influence of the supporting electrolyte, three different concentrations of sodium sulfate (0.014, 0.05 and 0.1 M) were tested in the undivided reactor with both electrodes. The results showed that an increase in the concentration of the supporting electrolyte improves the mineralization of ATL for the BDD electrode and, on the contrary, worsens for the ceramic electrode. Accelerated service life tests were carried out for the ceramic electrode at 100 mA·cm−2 in 0.5 M H2SO4. Ecotoxicity tests using marine bacteria (Vibrio Fischeri) revealed that no toxic by-products were formed in any case.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.