Abstract

Trace impurity transport in tokamaks is studied using an electrostatic, collisionless fluid model for ion-temperature-gradient and trapped-electron mode driven turbulence in the presence of radio frequency (rf) fields, and the results are compared with neoclassical predictions. It is shown that the inward impurity convective velocity (pinch) that is usually obtained can be reduced by the rf fields, in particular close to the wave resonance location where the rf ponderomotive force may be significant. However, the impurity diffusivity and convective velocity are usually similarly affected by the ponderomotive force, and hence the steady-state impurity density peaking factor −∇nz∕nz is only moderately affected by the rf fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.