Abstract

The concentration dependence of the chemical shifts for the protons H-2, H-8 and H-1' of ATP has been measured in D2O at 27 degrees C under several degrees of protonation in the pD range from 1.5 to 8.4. The results at pD greater than 4.5 are consistent with the isodesmic model of indefinite noncooperative stacking, while those at pD less than 4.5 indicate a preference for the formation of dimeric stacks. The stacking tendency follows the series, ATP4- (K = 1.3 M-1) less than D(ATP)3- (2.1 M-1) less than 1:1 ratio of D(ATP)3-/D2(ATP)-2- (6.0 M-1) much less than D2(ATP)2- (approximately 200 M-1) much greater than D3(ATP)- (K approximately less than 17 M-1) (for reasons of comparison all constants are expressed in the isodesmic model). These results are compared with previous data for adenosine [Ado (K = 15 M-1) greater than 1:1 ratio of Ado/D(Ado)+ (6.0 M-1) greater than D(Ado)+ (0.9 M-1)] and AMP [AMP2- (K = 2.1 M-1) less than D(AMP)- (3.4 M-1) less than 1:1 ratio of D(AMP)-/D2(AMP) +/- (5.6 M-1) greater than D2(AMP) +/- (approximately equal to 2 M-1) greater than D3(AMP)+ (K less than or equal to 1 M-1)] to facilitate the interpretation of the results for the ATP systems. Stack formation of H2(ATP)2- is clearly favored by additional ionic interactions; this is confirmed by measuring via potentiometric pH titrations the acidity constants of H2(ATP)2- in solutions containing different concentrations of ATP. It is suggested that in the [H2(ATP)]4-(2) dimer intermolecular ion pairs (and hydrogen bonds) are formed between the H+(N-1) site of one H2(ATP)2- and the gamma-P(OH)(O)-2 group of the other; in this way (a) the stack is further stabilized, and (b) the positive charges at the adenine residues are compensated (otherwise repulsion would occur as is evident from the adenosine systems). A detailed structure for the [H2(ATP)4-(2) dimer is proposed and some implications of the described stacking properties of ATP for biological systems are indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.