Abstract
In this research, it was studied the effects of the processing parameters applied to a twin screw extruder on the morphology and impact strength of poly(butylene terephthalate)/acrylonitrile-butadiene-styrene blends with and without a reactive compatibilizer. It was found that the increase of the feed rate highly decreased the ductile brittle transition temperature (DBTT) and slightly increased the room temperature impact strength (RTIS) of the compatibilized blends. Besides the influence of the feed rate, it was also found that the compatibilized blends could reach high RTIS and low DBTT values by an appropriate combination of the compatibilizer feeding position in the extruder, the screw rotation speed and the width of the kneading discs of the screw. The DBTT was found to be at least partially controlled by the spatial distribution of the rubbery particles, which was quantified by finite body tessellation, a method applied for the first time in polymer blends. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.