Abstract

The mobility of the most water-soluble polynuclear aromatic hydrocarbons (PAHs) such as naphthalene in contaminated soils from manufactured gas plant (MGP) sites or other similar sites is influenced not only by the naturally occurring soil organic matter (SOM) but also, and in many cases mostly, by the nature and concentration of coal tar xenobiotic organic matter (XOM) and other PAH molecules present in the medium under various physical states. The objective of the present study was to quantify the effects of these factors using batch experiments, in order to simulate naphthalene transport in soil–tar–water systems using column experiments. Naphthalene sorption was studied in the presence of (i) solid coal tar particles, (ii) phenanthrene supplied as pure crystals, in the aqueous solution or already sorbed onto the soil, (iii) fluoranthene as pure crystals, and (iv) an aqueous solution of organic molecules extracted from a liquid tar. All experiments were conducted under abiotic conditions using short naphthalene/sorbent contact times of 24–60 h. Although these tests do not reflect true equilibrium conditions which usually take more time to establish, they were used to segregate relatively rapid sorption phenomena (“pseudo equilibrium”) from slow sorption and other aging phenomena. For longer contact times, published data have shown that experimental biases due to progressive changes in the characteristics of the soil and the solution may drastically modify the affinity of the solutes for the soil. Slow diffusion in the microporosity and in dense organic phases may also become significant over the long term, along with some irreversible aging phenomena which have not been addressed in this work. Results showed that PAHs had no effect on naphthalene sorption when present in the aqueous solution or as pure crystals, due to their low solubility in water. Adsorbed phenanthrene was found to reduce naphthalene adsorption only when present at relatively high concentrations (about 120 mg/kg) in the soil. In contrast, experiments carried out with coal tar particles revealed a significant effect. Naphthalene sorption appeared to be proportional to the amount of coal tar added to the sand or soil, and a much higher affinity of naphthalene for XOM ( K oc above 2000 cm 3/g) than SOM ( K oc around 300 cm 3/g) was observed. Naphthalene transport in the columns of sand or soil spiked with coal tar particles was simulated very satisfactorily with a dual double-domain model. Around 90% of naphthalene retention by coal tar was found to occur within the organic phase, suggesting a phase partition process which may be explained by the amorphous nature of the XOM and its extreme affinity for naphthalene. For SOM, however, which is present as porous microaggregates of clay and humic substances, with less affinity for naphthalene, only 1/3 of naphthalene retention was found to occur within the organic phase, underlining the significant role of surface adsorption in the short term behavior of naphthalene in soil. For longer contact times, the model simulations proposed in the present study should be coupled to slow sorption, aging and biodegradation models to describe long-term behavior of naphthalene in soil–tar–water systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call