Abstract

ε-Fe2O3 is an iron(III) oxide polymorph attracting an increasing interest due to its unique magnetic properties combining extremely high coercivity and relatively large saturation magnetization. We review existing methods for the ε-Fe2O3 synthesis focusing on synthesis speed, repeatability, manufacturability and purity of the final product. Samples of ε-Fe2O3 have been synthesized using the two methods that appear the most promising: silica gel impregnation and microemulsion. In both cases, ε-Fe2O3 and α-Fe2O3 are present in the final product as attested by X-ray diffraction patterns and magnetic properties (maximum coercive force at 300 K~1 Tesla). Two different precursors, iron(III) nitrate and iron(II) sulfate, have been used in the silica gel impregnation method. Somewhat surprisingly, iron sulfate proved superior yielding ε-Fe2O3 content of 69% in the total iron oxide product, compared to 25% for iron nitrate under the same synthesis conditions. These results pave the way for modifying the existing ε-Fe2O3 synthesis methods aiming to increase the content of the epsilon phase in the final product and, consequently, improve its physicochemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.