Abstract

We have prepared magnetoelectric (ME) composite ceramics, free of foreign phases, in the lead zirconate titanate–cobalt nickel ferrite two-phase system: xPZT-36 + (100–x)Ni0.9Co0.1Fe2O4. The sol–gel derived ferrite powder used in our preparations seems to be doped with titanium cations from the PZT-36. The ceramics have a percolation threshold at x = 50–70 wt %, which is due to the increased electrical conductivity of Ni0.9Co0.1Fe2O4. As a consequence, the piezoelectric parameters of the ME ceramics drop sharply at x < 50–70 wt %: the piezoelectric moduli |dij| and piezoelectric voltage coefficients |gij| decrease by a factor of 3–5 in this composite range. The piezoelectric parameters |dij| and |gij| of the composites produced using the fine ferrite powder exceed those of the materials prepared using macrocrystalline Ni0.9Co0.1Fe2O4 powder by more than a factor of 2. The piezoelectric voltage coefficient g33 correlates with the ME coefficient ΔE/ΔH. The highest ME conversion efficiency (up to 45 mV/(cm Oe)) is offered by the 80 wt % PZT-36 + 20 wt % Ni0.9Co0.1Fe2O4 composites, whose composition lies in a subpercolation region. Even though the composites produced using the fine ferrite powder possess improved piezoelectric properties, they have smaller ΔE/ΔH coefficients (no greater than 25 mV/(cm Oe)), which can be tentatively attributed to the degradation of the properties of the ferrite as a consequence of doping with Ti4+ cations during the sintering of the composite ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call