Abstract

The mechanical properties of an Al-6 wt pct Zn-1.2 wt pct Mg alloy with various width of precipitate-free zones have been investigated. The width of the precipitate-free zone (PFZ) has been changed by the quench interruption technique without any appreciable change in the size and distribution of precipitates. An important relationship has been observed between the width of the PFZ and the quench-interruption period;i.e., the width of the PFZ increases in proportion to the square root of the holding time at 200°C. From the analysis of stress-strain curves as well as the observation of dislocation arrangements in slightly deformed specimens, the plastic deformation has been found to occur preferentially in the PFZ. The initial stage of deformation is much affected by the change in the width of the PFZ, but in the later stage, the work-hardening rate seems to be almost independent of the PFZ width. Tensile tests show that the ultimate tensile strength and the 0.2 pct proof stress decrease very little with increasing width of the PFZ, while the uniform elongation is practically constant regardless of the reduction in the nonuniform elongation. The work-hardening rate at the initial stage of deformation is found to decrease in proportion to the reciprocal of the PFZ width. This relationship can be explained from the dislocation model for work hardening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call