Abstract

The magnetic properties of Mn-Zn ferrites depend strongly on the microstructure, chemical and phase composition. In this paper the effect of synthesis and sintering conditions on the structure, phase composition and properties of Mn-Zn ferrites is investigated. The specimens for the study were obtained by pressureless sintering. The magnetic properties were measured on a B-H analyzer. The structure was investigated by XRD and SEM. Materials with an average grain size of 2.2 μm were obtained by sintering at a temperature of 1265 °C. It was found that an increase in the synthesis temperature from 700 to 1000 °C promotes the growth of the initial magnetic permeability of these materials from 1100 to 1370. The rapid cooling of the powders synthesized at 1000 °C allows maintaining a high content of the spinel phase. In the structure of materials obtained by sintering powders with initially high spinel content at 1300 °C, grains of abnormally large size are formed. This leads to an increase in the initial permeability, magnetic induction at Hm = 1200 A/m, f = 10 kHz and magnetic losses at high frequencies (up to 500 kHz). A material with fine-grained structure was obtained by using air at the heating stage of pressureless sintering. This contributed to the reduction of magnetic losses without a significant decrease in Bm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call