Abstract
The Eulerian multiphase code has been applied for the comparative simulation of the experimental results obtained for varying flow rates of both fluid phases and for systems of various physicochemical properties used in the laboratory trickle-bed reactor (TBR). Therefore six different radial porosity profiles and three sets of the Ergun constants used in the relations defining the interphase momentum exchange have been implemented into the CFD code. The mean relative error of the pressure drop and of the averaged holdup as well as the standard deviation determined with respect to the experiments have been used as the criterion for the validation of the theoretical model. These values explicitly confirmed the necessity of applying the radial porosity profile in the beds of low values of the D/dp ratio i.e. for laboratory equipment in order to obtain accurate values of the pressure drop and the averaged holdup. They also enabled to select the optimum radial porosity correlation and the optimum Ergun constants in the relations of interphase momentum exchange which in consequence could be recommended for the modeling of the hydrodynamics in the laboratory TBR by means of the CFD code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.