Abstract

In this study, epoxy nanocomposites containing different fractions of n-phenylaminopropyl (POSS) were prepared. The nanocomposites were studied by transmission electron microscopy (TEM), gel content, dynamic- mechanical analysis (DMA) and thermogravimetric analysis (TGA). The parameters for Avrami's equation were calculated from the degradation curves. The dispersions used to form the nanocomposites were effective above 5 wt % of POSS, and the gel content increased with the addition of POSS. The DMA analysis exhibited an increase in the storage modulus (E') and a shifting of T g to higher temperatures upon POSS incorporation. The weight loss indicated that the POSS promoted an increase in thermal stability of the epoxy resin. The Avrami parameters demonstrated that the addition of POSS decreased the Avrami constant (k'), increased the half-life (t 1/2 ) of degradation and promoted changes in the Avrami exponent (n). These results suggest that the increase in the glass transition temperature and thermal stability depend on the reactive groups in the POSS nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.