Abstract

The effect of the poloidal equilibrium flow and flow shear on the tearing mode instabilities for tokamak plasmas is investigated. The vorticity equation is derived and approximately solved for large poloidal mode numbers (m). Asymptotic matching of the inner solution to the outer solution can approximately give the classical tearing mode stability index Δ′. For typical plasma parameters with positive flow shear, we notice that the poloidal mean flows have a beneficial effect on the classical tearing mode and vice versa. To study the modes with arbitrary poloidal mode numbers, we numerically solve the vorticity equation for delta prime (Δ′) for typical plasma parameters with positive flow shear at the rational surface and the resulting Δ′ with large m also decreases with increasing poloidal flow velocity, consistent with the approximate analytical large m results. Our numerical calculations indicate that the poloidal mean flow with positive flow shear has beneficial influence on the stabilization of classical tearing modes in tokamak plasmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.