Abstract

Electroluminescence (EL) is an innovative technology in the lighting area. EL devices’ main structure consists of a phosphor layer sandwiched between two electrodes. In this work, several alternating-current EL devices were developed by applying a set of sequential layers with combinations of in-house prepared inks and a commercially available ink as the phosphor layer. A flexible polyester textile substrate was functionalized with the inks by spray coating, after knife coating an interfacial layer directly on the surface. A thorough study was carried out on the phosphor layer composition to optimize the EL device performance, more precisely, illuminance intensity and illuminance homogeneity. The developed phosphor layer was composed of zinc sulfide doped with copper (between 30.0 and 38.1 wt%) and diluted by using a diluent at different concentrations (from 28.0 to 35.5 wt%). The best peak illuminance intensity of 61 lux was obtained when the phosphor ink presented a 35.4% ZnS:Cu ratio and was diluted with 33.0% diluent. This study aimed to determine the best formulation of the phosphor layer, which can be highly useful for further developments of EL devices, taking into account different applications in the market.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call