Abstract

ABSTRACT By means of contact angle measurements on dry layers of electrostatically neutral dextran with pure water (pH 6.1), water acidified with HCl (to pH 1.94) and water made alkaline with NaOH (to pH 12.8), it could be shown that there was essentially no change as a function of pH in the ratio of γ+/γ− of water as compared with the aqueous acid and alkaline solutions. (Here γ+ is the Lewis acid parameter of the polar surface tension component of water and γ− is its Lewis base parameter). In contrast, with contact angles measured with the same liquids on negatively charged clean glass, a significant decrease in contact angle was observed with water at pH 12.8, which was caused by the fact that at this alkaline pH an increase in surface hydrophilicity took place. This is because surfaces that have a given surface electrical potential at neutral pH generally acquire an even higher surface potential under more alkaline conditions which, concomitantly, also gives rise to an increase in surface hydrophilicity, and thus to lower contact angles with water. Finally, contact angles with acid water, pure water, and alkaline water, deposited on hydrophobic Parafilm surfaces, were exactly the same.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.