Abstract

Spherical valves are supplied for high-head turbines. The drive of spherical valves designed and manufactured by Power Machines/LMZ provides opening by means of servomotors, and closing under the action of the moment created by counterweights.Selection of parameters for the spherical valve and its design are based on the assumption continuity of the water flow entering the turbine through the penstock. In case, when two or more hydro-units are installed at the HPP, the penstocks usually have pipe bifurcations (Fig.1). The design of the penstock should provide a uniform supply of water to all units without spin, rupture of continuity and pulsation. Given in the paper is an example of the HPP with two (2) hydro-units equipped with inlet spherical valves. In the course of operation valve rotor oscillations with different periods in time (T ≈ 15 sec.) were detected. When analyzing, no faults in the valve design and its mechanism of operation were detected.In the course of the tests, vibration parameters of the spherical valves were determined in the following operating conditions: each of the hydro-units running separately and both of them running simultaneously for different power output values. Based on the test results, operating conditions with maximum vibration of were located. The reasons of surging of perturbing forces acting on the rotor of the spherical valve were detected in the course of analysis of the penstock design. Possibility of accumulation of air at the penstock pipe bifurcations was found. When the air transported by the water achieved its critical value, this air appeared to be the cause of instability in the valve operation. The attention was drawn to necessity of taking into account this circumstance when designing penstock pipe bifurcations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.