Abstract

Due to the dense organization of organelles, cytoskeletal elements, and protein complexes that make up the intracellular environment, it is likely that membrane-permeant solutes may be excluded from a fraction of the interstitial space of the cytoplasm via steric restrictions, electrostatic interactions, and other long-range intermolecular forces. This study investigates the hypothesis that the intracellular partitioning of membrane-permeant solutes manifests itself as a partial volume recovery in response to hyperosmotic loading, based on prior theoretical and biomimetic experimental studies. Osmotic loading experiments are performed on immature bovine chondrocytes using culture conditions where regulatory volume responses are shown to be insignificant. Osmotic loading with membrane-permeant glycerol (92 Da) and urea (60 Da) are observed to produce partial volume recoveries consistent with the proposed hypothesis, whereas loading with 1,2-propanediol (76 Da) produces complete volume recovery. Combining these experimental results with the previous theoretical framework produces a measure for the intracellular partition coefficient of each of these solutes. At 1000 mOsm, 1,2-propanediol is the only osmolyte to yield a partition coefficient not statistically different from unity, κ p i = 1.00 ± 0.02. For glycerol, the partition coefficient increases with osmolarity from κ p i = 0.48 ± 0.19 at 200 mOsm to κ p i = 0.80 ± 0.07 at 1000 mOsm; urea exhibits no such dependence, with an average value of κ p i = 0.87 ± 0.07 for all osmolarities from 200 to 1000 mOsm. The finding that intracellular partitioning of membrane-permeant solutes manifests itself as a partial volume recovery under osmotic loading offers a simple method for characterizing the partition coefficient. These measurements suggest that significant partitioning may occur even for small membrane-permeant osmolytes. Furthermore, a positive correlation is observed, suggesting that a solute's cytoplasmic partition coefficient increases with increasing hydrophobicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call