Abstract

Abstract Induction heat treatment facilities have a wide application range for heat treatment of cylindrically shaped materials in the steel processing industry due to their reduced process-time and high throughput. The adjustment of the heat treatment process usually aims at reaching a desired hardness. However, the question arises whether the full potential of the applied material is actually exploited. Therefore, this work systematically investigates the influence of the primary microstructure, austenitisation and tempering conditions to the resulting notch impact energy and flow behaviour of a 50CrMo4 quenched and tempered steel, with normalised and soft-annealed prior microstructures. The heat treatments, performed with a laboratory induction heat treatment facility, show that low austenitising temperatures lead to a distinct yield point with reduced strain hardening, while increasing the tempering heating rate results in the precipitation of smaller carbides and a significant increase in tensile strength. Austenitising needs to be adjusted to the primary microstructure to reach an optimum solution state to exploit the hardness and notch impact energy potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.