Abstract

PurposeThe purpose of this paper is to study the influence of number of feeding holes on the performance of aerostatic bearings with spindle rotation. In traditional design of aerostatic bearings, the selection of hole numbers is dependent only on spindle size. However, when the hole numbers of air feeding are enough, the performance of the aerostatic bearing cannot be enhanced by increasing the hole numbers.Design/methodology/approachThe Reynolds equation is utilized to model the air film within bearing clearance at constant temperature and the state equation of adiabatic process is for air feeding within bearing clearance. The finite difference method with relaxation algorithm is utilized to determine the pressure distributions from discretized and coupled equations of flow continuity. The eccentricity, spindle speed, and the number and arrangement of feeding holes are considered in the analyses to determine the load capacity, attitude angle, and flow rate for the comparisons between various designs of aerostatic bearings.FindingsIt is seen from the simulation results that the aerostatic bearing designed with a small number of feeding holes and without locating at bearing bottom is most suitable for the spindle operating at high speed, while the bearing designed with a large number of feeding holes is suitable for the spindle operating at low speed, and the load capacity is increased with the increasing number of feeding holes for low journal speed.Originality/valueThe paper proposes an extensive database as a critical requirement in the design for number and arrangement of feeding holes of aerostatic bearings for the spindle operating at low or high speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.