Abstract
ABSTRACTSurrogate-based optimization (SBO) has recently found widespread use in aerodynamic shape design owing to its promising potential to speed up the whole process by the use of a low-cost objective function evaluation, to reduce the required number of expensive computational fluid dynamics simulations. However, the application of these SBO methods for industrial configurations still faces several challenges. The most crucial challenge nowadays is the ‘curse of dimensionality’, the ability of surrogates to handle a high number of design parameters. This article presents an application study on how the number and location of design variables may affect the surrogate-based design process and aims to draw conclusions on their ability to provide optimal shapes in an efficient manner. To do so, an optimization framework based on the combined use of a surrogate modelling technique (support vector machines for regression), an evolutionary algorithm and a volumetric non-uniform rational B-splines parameterization are applied to the shape optimization of a two-dimensional aerofoil (RAE 2822) and a three-dimensional wing (DPW) in transonic flow conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.