Abstract

High density plasma etching processes of polysilicon gates on thin gate oxide (4.5 nm) have been studied for sub-quarter micron device fabrication. The influence of the mask material on the etching performance has been investigated using either a photoresist mask or an oxide hard mask. Trenching phenomena can be observed at the edges of the gates with both types of mask. When using a photoresist mask, severe defects are formed in the gate oxide near the polysilicon gate, showing that the gate oxide has been preferentially etched during the process. We show that these defects can be attributed to the trenching induced by the main etching step of the process, which is transferred into the gate oxide before the overetch starts. The transfer of the trenching effect depends strongly on the polysilicon-to-oxide selectivity which is shown to be dependent on the presence of carbon in the process chamber. When replacing the photoresist mask by an oxide hard mask the polysilicon-to-oxide selectivity can be improved by a factor of greater than three. Therefore, the use of an oxide hard mask results in a larger process window without creating undesirable defects in the active areas of the devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call