Abstract

AbstractThe electronic processes occurring within the perovskite solar cells (PSCs) are strongly influenced by the nature of the organic A cations present within the inorganic framework. In this study, the impact of FA (CH(NH2)2+) and Cs+ cations on the intrinsic and interfacial properties in the FAPbBr3 and CsPbBr3 PSCs is investigated. The analysis of current density (JSC) and photovoltage (VOC) as a function of illumination intensity establishes that the interfacial charge transport is more rapid in FAPbBr3 devices. Small perturbation measurements including intensity modulated photocurrent and photovoltage spectroscopy are applied to explore the resistive and capacitive elements. Furthermore, electrochemical impedance spectroscopy measurements are found to correlate well with the photovoltaic characteristics of FAPbBr3 and CsPbBr3 PSCs. Overall, the in‐depth analysis of various phenomena occurring within the bromide PSCs allows to underline the working principle, which provides a key to optimize the device performance. The present protocol is not only valid for PSCs but can also be extended to devices based on alternative light harvesters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.