Abstract

Paper-based conductive electrode materials of polypyrrole (PPy) and nanocellulose (NC) have received much attention lately for applications in non-metal-based energy storage devices, ion exchange, etc. The aim of this study was to study how the primary characteristics of NC raw materials impact and electrochemical properties of conductive NC–PPy composite sheets. Three NC raw materials were used: Cladophora cellulose (NCUU) produced at Uppsala University, Cladophora cellulose (NCFMC) produced at FMC Biopolymer, and microfibrillated cellulose (NCINN) produced at Innventia AB. Composite paper sheets of PPy coated on the substrate NC material were produced. The NC raw materials and the composites were characterized with a battery of techniques to derive their degree of crystallinity, degree of polymerization, specific surface area, pore size distribution, porosity, electron conductivity, charge capacity and tensile properties. It was found that the pore size distribution and overall porosity increase upon coating of NC fibres for all the samples. The charge capacity of the composites was found to decrease with the porosity of the samples. It was further found that the mechanical strength of the pristine NC sheets was largely dependent on the overall porosity, with NCINN having the highest mechanical strength and lowest porosity in the series. The mechanical properties of the composite NC–PPy sheets were significantly diminished as compared with pristine NC sheets because of the impaired H-bonding between fibres and PPy-coated nanofibres. It was concluded that to improve the mechanical properties of PPy–NC sheets, a fraction of additive bare NC fibres is beneficial. Future study may include the effect of both soluble and insoluble additives to improve the mechanical strength of PPy–NC sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call