Abstract

The purpose of the present study was to investigate the influence of molecular weights on the chemical, biophysical, and biological properties of bioreducible oligoethylenimine conjugates. The cationic conjugates were synthesized by polyaddition between branched oligoethylenimine 800 Da (OEI) and the disulfide bond containing N,N'-cystamine bisacrylamide (CBA) linker. A correlation between the copolymer molecular weights and the polyplex transfection properties was found. The OEI-CBA copolymers differing in molecular weights (from 8.6 to 37 kDa) showed good plasmid DNA binding ability resulting in compact 90- to 150-nm-sized polyplexes. Colloidal stability of the polyplexes was lost in reductive environment. A low concentration of dithiothreitol of 5 microM was sufficient to render polyplexes unstable in size. Reducing conditions at physiological salt concentration triggered polyplex dissociation. The bioreducible polymers displayed much lower cytotoxicity (IC(50) approximately 100 microg/mL in cell culture) than branched polyethylenimine 25 kDa (BPEI) and linear polyethylenimine 22 kDa (LPEI). Reporter gene transfection experiments were done with CHO-K1 and B16-F10 cells. The largest (37 kDa) copolymer HC-6-8 demonstrated highest transfection levels among all the bioreducible copolymers, which was comparable with LPEI and much more effective than BPEI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.