Abstract
Infrared-visible sum-frequency generation (SFG) spectroscopy is performed at different visible wavelengths between 450 and 650 nm in order to investigate the interaction between metallic substrates (Pt, Ag and Au) and 1-dodecanethiol self-assembled monolayers. We show that such measurements provide a means to study the electronic properties of metals as well as the interference phenomena between the SFG signals from the adsorbate and the substrate. The common features of the three interfaces are the vibration modes of the terminal methyl groups. However, these resonances appear as peaks for Pt (111) and as dips in the case of Ag (111). Their shape is not modified when the visible wavelength is tuned between 450 and 650 nm. Moreover, the metal sum-frequency generation contribution is slightly modified in that spectral range. For Au (111) samples, the sum-frequency generation spectrum drastically evolves with the visible wavelength: the peak resonant sum-frequency generation signal at 450 nm becomes rather dip-shaped at 650 nm. The non-linear response of gold is also enhanced when the wavelength associated with the sum-frequency process is close to 480 nm. These results are interpreted on the basis of the metal electronic properties that are responsible for the non-resonant contribution to the SFG signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.