Abstract

Several linear lumped-parameter models were proposed in the past to identify the main mechanisms underlying the cross-flow instability of a single flexible cylinder in tube bundles. Basing on such models, we analyze the influence of the mass ratio when the cylinder vibrates in the transverse direction, without structural damping (corresponding to a zero Scruton number). For two selected mass ratios, we focus on this linear interaction plotting the poles of the fluid–structure system as a function of the reduced velocity (root locus). This asymptotic approach allows a better understanding of the combined influence of the transient fluidelastic coupling and the mass ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.