Abstract

Abstract Atmospheric intraseasonal variability in the tropical Atlantic is analyzed using satellite winds, outgoing longwave radiation (OLR), and reanalysis products during 2000–08. The analyses focus on assessing the effects of dominant intraseasonal atmospheric convective processes, the Madden–Julian oscillation (MJO), and Rossby waves on surface wind and convection of the tropical Atlantic Ocean and African monsoon area. The results show that contribution from each process varies in different regions. In general, the MJO events dominate the westward-propagating Rossby waves in affecting strong convection in the African monsoon region. The Rossby waves, however, have larger contributions to convection in the western Atlantic Ocean. Both the westward- and eastward-propagating signals contribute approximately equally in the central Atlantic basin. The effects of intraseasonal signals have evident seasonality. Both convection amplitude and the number of strong convective events associated with the MJO are larger during November–April than during May–October in all regions. Convection associated with Rossby wave events is stronger during November–April for all regions, and the numbers of Rossby wave events are higher during November–April than during May–October in the African monsoon region, and are comparable for the two seasons in the western and central Atlantic basins. Of particular interest is that the MJOs originating from the Indo-Pacific Ocean can be enhanced over the tropical Atlantic Ocean while they propagate eastward, amplifying their impacts on the African monsoon. On the other hand, Rossby waves can originate either in the eastern equatorial Atlantic or West African monsoon region, and some can strengthen while they propagate westward, affecting surface winds and convection in the western Atlantic and Central American regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call