Abstract

This work investigates the tribological behavior of a machined S355JR structural steel in dry sliding conditions for the development of an innovative seismic dissipation system. Flat-ended pins and disks were made of the same structural steel to simulate the conformal contact of different device parts. Pins were machined by turning, while disks were milled and turned to obtain a nominal average surface Ra roughness ranging from 0.8 µm to 6.3 µm. The influence of the surface roughness on the coefficient of friction (COF), specific wear rate (SWR), and time to steady-state (TSS) was investigated. Tribological tests were conducted reciprocating motion in dry sliding conditions to simulate the operating conditions of the device, with 1 Hz and 2 Hz reciprocating frequencies and an applied normal load of 50 N. The Rsk and Rku roughness parameters helped to better understand the tribological response of milled and turned disks, having an influence on the TSS and SWR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.