Abstract

Pellet injection is planned to be the main fuelling method on ITER. The high temperature of the plasma during a fusion burn will limit the penetration of the pellet to the outer third of the minor radius. This limited penetration is expected to be compensated by a polarization drift, which will deposit the particles deeper in the plasma for the pellets injected from the high field side. In order to evaluate the expected depth of the fuelling on ITER, a good understanding of this drift effect is important. Experimental data acquired on the DIII-D (USA) and Tore Supra (France) tokamaks show that the polarization drift is influenced by the low order rational q surfaces. These surfaces appear to attenuate the polarization mechanism as the drifting particles cross them. In this paper, a correlation between the maximum of the pellet mass deposition profile and the positions of the q = 2 and q = 3 surfaces on DIII-D and Tore Supra is shown for high field side and low field side injection. A model is proposed to explain this effect and compared with the experimental results. To conclude, the possible consequences of this phenomenon on the fuelling in ITER are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.