Abstract

This paper is focused on the influence of the linear mode coupling caused by the fiber bending on the nonlinear distortions in a mode-division multiplexed system. The system under test utilizes the fundamental Gaussian mode and the conjugated first-order vortex modes propagating in the step-index fiber at the same wavelength. For such kind of system, the nonlinear impairments are caused mainly by the cross-phase and self-phase modulations. Propagation of the modal composition is described by the system of generalized coupled nonlinear Schrödinger equations, which serves as a basis of our simulations. Considering the nonlinear operator analytically, we show that it reaches its maximum value due to the power transfer between mode channels caused by the linear mode coupling. Simulation results for equal initial powers in NRZ-coded mode channels demonstrate that nonlinear signal impairments increase significantly for all mode channels in the case of strong linear mode coupling. In the case of weak linear coupling, the increase of nonlinear impairments was also observed, but this effect was appreciably weaker. Moreover, simulations show that the effect described above is stronger for the first-order modes than for the fundamental mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.