Abstract

Three nickel(II) complexes (C1–C3) bearing diamine-bridged 4-hydroxysalicylaldehyde ligands (L1–L3) were successfully synthesized, and all the compounds were characterized by physicochemical and spectroscopic methods. The influence of the oligomerization parameters on the catalytic properties of complex C2 was systematically investigated. The results showed that oligomerization parameters played an important role in the catalytic properties and the catalytic activity was 19.90 × 104 g/(mol·Ni·h) and the selectivity of C8+ olefins was 60.25% when the precatalyst dosage was 5 μmol, the Al/Ni molar ratio was 500, the temperature was 25 °C, the reaction time was 30 min and the pressure of ethylene was 0.7 MPa. Complexes C1–C3 with different lengths of the bridged group were evaluated for ethylene oligomerization, and the results showed that the length of the alkyl chain in the ligand had little influence on the catalytic properties. Complex C4 based on ethanediamine-bridged salicylaldimine and C5 based on the hyperbranched salicylaldimine in our previous work were also investigated to study the influence of the ligand structure on the catalytic properties. The catalytic activity [31.80 × 104 g/(mol·Ni·h)] and the content of the low-carbon oligomers (70.16%) for complex C4 were higher than complex C2 with hydroxyl substituent in benzene ring. The catalytic activity and the content of the low carbon oligomers for complex C5 were far higher than other four complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.