Abstract

The influence of the lens effect on the electron paramagnetic resonance (EPR) signal intensity was investigated in a loop-gap resonator (LGR) with an inner diameter of 41 mm. TheQ- value and EPR signal intensity were measured when the phantoms containing 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidin-l-yloxy dissolved in sodium chloride aqueous solutions were put in the LGR. TheQ- value and signal intensity reduced with increasing concentrations of sodium chloride in the phantom, indicating that the imaginary part of the dielectric constant is larger in the phantom with the higher concentration of sodium chloride. However, relationships betweenQ-values of the resonator and EPR signal intensities were not proportional and signal intensities were relatively higher compared with theQ-values. These findings suggest that the signal reduction due to lowQ is slightly compensated by the lens effect in the sample with the large real part of the dielectric constant. In the distribution of the signal intensities of a pinpoint sample made of diphenylpicrylhydrazyl in the agar medium containing sodium chloride in the LGR, it was found that the signal intensity decreased according to the distance from the center and the difference in the signal intensity within 10 mm from the center was about 20%, indicating the inhomogeneity of the alternating magnetic field at the center and marginal region in the sample with the large dielectric constant caused by the lens effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call