Abstract

The dependence of coating process and properties of the fluoride conversion film on AZ31 Mg alloy on the concentration of deaerated KF solutions was studied by anodic potentiostatic deposition, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). The results show that the film deposited in 0.05 M KF solution is a monolayer consisting of amorphous Mg(OH)2 and MgF2, while amorphous Mg(OH)2 and MgF2 and crystallized KMgF3 as a double layer formed in 0.1 M~0.5 M KF solutions. The composition of inner layer is same as that of the monolayer, while the outer layer is composed of Mg(OH)2 and MgF2 and KMgF3. Continually increasing KF concentration reduces the content of KMgF3 in the outer layer, shortens the coating duration, and reduces the film thickness. The corrosion resistance of FCF coatings is closely correlated with the content of KMgF3 and the film thickness

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.