Abstract

ABSTRACTThe influence of the sintering additive system on the grain growth anisotropy of silicon nitride has been studied in the two supersaturated oxynitride glass systems M-Si-Al-O-N (where M = Yb, Gd, Nd, La, and Y) and M-Si-Mg-O-N (where M = Lu, Sm, La, Sc and Y). The glasses contained a low volume fraction of grains and offer the possibility to study grain growth without impingement. Both systems show an increase of the aspect ratio with an increasing cation radius of the rare earth elements. The aspect ratios for the Sc- and Y-based glasses are higher than expected from the ionic radius.Analytical transmission electron microscopy of the bulk glass and grain boundary film between flocculated particles reveals a difference in chemical composition. The larger rare earth cations are enriched in the film and the smaller ones are depleted compared to the bulk composition. The enrichment of the larger cations can be considered as an adsorption layer which reduces the growth rate of the prism planes. Glass systems with smaller cations (Yb, Gd) reveal a pronounced growth of the prism planes and sialon is formed in the outer region of the grains. The interfacial strength which determines the fracture toughness increases with a decreasing cation radius, but the effect is mainly attributed to the sialon formation rather than by the cation itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call