Abstract

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide that is released from thymosin β4 by prolyl oligopeptides. It is hydrolyzed by the key enzyme of the renin-angiotensin system, angiotensin-converting enzyme (ACE). The aim of the present study was to investigate the alterations in Ac-SDKP and the ACE/angiotensin II (Ang II)/angiotensin II type 1 (AT1) receptor axis and its impact on the pathogenesis and development of silicotic fibrosis. For in vivo studies, a HOPE MED 8050 exposure control apparatus was used to establish different stages of silicosis in a rat model treated with Ac-SDKP. For in vitro studies, cultured primary lung fibroblasts were induced to differentiate into myofibroblasts by Ang II, and were pretreated with Ac-SDKP and valsartan. The results of the present study revealed that, during silicosis development, ACE/Ang II/AT1 expression in local lung tissues increased, whereas that of Ac-SDKP decreased. Ac-SDKP and the ACE/AT1/Ang II axis were inversely altered in the development of silicotic fibrosis. Ac-SDKP treatment had an anti-fibrotic effect in vivo. Compared with the silicosis group, the expression of α-smooth muscle actin (α-SMA), Collagen (Col) I, Fibronectin (Fn) and AT1 were significantly downregulated, whereas matrix metalloproteinase-1 (MMP-1) expression and the MMP-1/tissue inhibitor of metalloproteinases-1 (TIMP-1) ratio was increased in the Ac-SDKP treatment group. In vitro, pre-treatment with Ac-SDKP or valsartan attenuated the expression of α-SMA, Col I, Fn and AT1 in Ang II-induced fibroblasts. In addition, MMP-1 expression and the MMP-1/TIMP-1 ratio were significantly higher in Ac-SDKP and valsartan pre-treatment groups compared with the Ang II group. In conclusion, the results of the present study suggest that an imbalance between Ac-SDKP and ACE/Ang II/AT1 molecules promotes the development of silicosis and that Ac-SDKP protects against silicotic fibrosis by inhibiting Ang II-induced myofibroblast differentiation and extracellular matrix production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call