Abstract

The study focuses on detection of defects in the single-core electrical wire insulation by changing the linear capacity of the electric wire. Numerical simulation was performed to create defects that are difficult to implement in practice. In the study, models of the following defects were created: local thinning of the wire insulation, eccentricity, foreign inclusion in the wire insulation. During the study, the depth and length of the ‘local thinning’ defect in the wire insulation, the shift of the core center relative to wire the center, length and thickness of the ‘foreign inclusion’ defect were varied. As a result, absolute and relative values of the geometric dimensions of the defects that cause a significant change in the wire capacitance are revealed. A significant deviation of the capacitance is taken at the level of 5% deviation from the nominal value of the capacitance of a defect-free wire in accordance with the requirements of normative and technical documentation and the accuracy of device for in-process testing of the wire capacitance. The paper reports the results of the initial study. Further research is required to increase the reliability of the models used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.