Abstract

The performance of the capacitive gap-sensing system plays a critical role in a satellite-based gravity gradiometer that is developed using an electrostatic accelerometer. The capacitive sensing gain mainly depends on the stabilized injection bias amplitude, the gain of the transformer bridge, and the trans-impedance amplifier. Previous studies have indicated that amplitude noise is the main factor influencing the noise of capacitive displacement detection. Analyzing the capacitive gap-sensing system indicates that the amplitude, frequency, phase, and broadband noises of the stabilized injection bias have varying levels of influence on the performance of the detection system. This paper establishes a model to clarify the mentioned effects. The validation of the sub-tests demonstrates that the analysis and evaluation results of various noise coefficients are highly consistent with the model's predicted outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.