Abstract

The influence of the inclusion of the organic solvent propylene carbonate (PC) in microporous membranes based on poly(l-lactic acid) (PLLA) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP) has been studied based on its relevance for the application of those separator membranes in lithium-ion batteries. The membranes have been produced through solvent casting and characterized with respect to the swelling ratio originated by the uptake of the organic solvent. The organic solvent uptake affects the porous microstructure and crystalline phase of both membrane types. The organic solvent uptake amount affects the crystal size of the membranes as a consequence of the interaction between the solvent and the polymer, since the presence of the solvent modifies the melting process of the polymer crystals due to a freezing temperature depression effect. It is also shown that the organic solvent partially penetrates into the amorphous phase of the polymer, leading to a mechanical plasticizing effect. Thus, the interaction between the organic solvent and the porous membrane is essential to properly tailor membrane properties, which in turn will affect lithium-ion battery performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.