Abstract

On December 16, 2013, right after the Three Gorges Reservoir (TGR) reached its highest annual water level, a powerful M5.1 earthquake occurred in Badong County, China’s Hubei Province. The epicenter is 5.5km away from the upstream boundary and 100km from the dam. Was this earthquake triggered by the impoundment of the TGR, and what are its subsequences? To answer these questions, we constructed a coupled three-dimensional poroelastic finite element model to examine the ground surface deformation, the Coulomb failure stress change (ΔCFS) due to the variation of elastic stress and pore pressure, and the elastic strain energy potential accumulation in the TGR region upon the occurrence of this event. Our calculated maximum surface deformation values beneath the TGR compare well with GPS observations, which validates our numerical model. At the hypocenter of the earthquake, ΔCFS is around 8.0∼11.0kPa, revealing that it may be eventually triggered by the impoundment. We also discovered that the total elastic strain energy potential accumulation due to the impounded water load is around 1.7×1012J, merely equivalent to 0.01% of the total energy released by this event, indicating that this earthquake is predominately controlled by the typical regional tectonic settings as well as the weak fault zones, and the reservoir impoundment might only facilitate its procedure or occurrence. Furthermore, the stress level in this region remains high after this earthquake and the subsequent reservoir-triggered micro-seismicity or even bigger event are highly possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call