Abstract

We present a Thomas–Fermi-based envelope function calculation of the electronic structure for n-type double δ -doped GaAs quantum wells under the influence of applied hydrostatic pressure. An empirical formula for the electron mobility is used to qualitatively describe some transport properties in the system. The optimal interwell distance and hydrostatic pressure for which the mobility would be a maximum are obtained, particularly in the high density limit (above 10 13 cm - 2 ). This could be of interest for the design and fabrication of high power, high speed electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call