Abstract

Thermal energy storage represents an important aspect of building energy conservation. Unfortunately, modern buildings with lightweight building envelopes not provide sufficient heat storage capacity and indoor overheating is a common problem, mostly solved by high performance air conditioning that leads to the higher electricity consumption. Here, Phase Change Materials (PCMs) that allow significant heat storage or release when undergo phase transition can find use. On this account, a detailed testing of a new type of cement-lime plaster modified by PCM admixture with respect to the temperature change rate is presented in the paper. The studied material is based on commercial dry plaster mixture that is modified by microencapsulated polymer PCM admixture. For characterization of the developed material, measurement of basic physical and mechanical properties is done. Within the DSC analysis, the researched material is exposed to the temperature loading ranging from 0 °C to 40 °C, with the temperature change rate of 1, 5 and 10 °C/min respectively. On the basis of DSC tests, temperature of phase change and its corresponding enthalpy are determined. The obtained data show the effect of heating and cooling mode on materials performance in the form of a significant shift of DSC curves. This effect is evaluated and applicability of incorporated PCM admixture for the use in thermal energy storage plasters is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.