Abstract

Ethyl octyl ether (EOE) can be obtained by the ethylation of 1-octanol by means of ethanol or diethyl carbonate over acidic ion-exchange resins. However, EOE formation has to compete with the less steric demanding formation of diethyl ether, by-product obtained from ethanol dehydration or diethyl carbonate decomposition. In the present work, the influence of the resin functionalization degree on EOE formation has been evaluated. A series of partially sulfonated resins (0.87–4.31mmolH+/g) were prepared by the sulfonation of a macroreticular styrene–divinylbenzene copolymer. The catalysts were characterized, and subsequently, tested in a batch reactor (T=150°C, P=25bar). Amberlyst 15 and 46 were also tested for comparison purposes. Catalytic runs revealed that EOE formation occurred mainly in the firstly sulfonated domain of the polymer skeleton, the least crosslinked; while diethyl ether was formed in the whole polymer bead. Accordingly, the functionalization of the least accessible polymer domain, as a result of increasing the sulfonation temperature or by using a pre-swelling solvent, is not suitable to produce long chain ethers such as EOE; which are preferred as diesel fuels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.