Abstract

Background:Despite the recent advances in computational fluid dynamics (CFD) techniques applied to blood flow within the left atrium (LA), the relationship between atrial geometry, flow patterns, and blood stasis within the left atrial appendage (LAA) remains unclear. A better understanding of this relationship would have important clinical implications, as thrombi originating in the LAA are a common cause of stroke in patients with atrial fibrillation (AF). Aim:To identify the most representative atrial flow patterns on a patient-specific basis and study their influence on LAA blood stasis by varying the flow split ratio and some common atrial modeling assumptions. Methods:Three recent techniques were applied to nine patient-specific computational fluid dynamics (CFD) models of patients with AF: a kinematic atrial model to isolate the influence of wall motion because of AF, projection on a universal LAA coordinate system, and quantification of stagnant blood volume (SBV). Results:We identified three different atrial flow patterns based on the position of the center of the main circulatory flow. The results also illustrate how atrial flow patterns are highly affected by the flow split ratio, increasing the SBV within the LAA. As the flow split ratio is determined by the patient’s lying position, the results suggest that the most frequent position adopted while sleeping may have implications for the medium- and long-term risks of stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call