Abstract
The increase in common rail pressure can lead to increased cavitation inside the injector, resulting in degradation of injector performance and reduced life. The paper investigates the effect of the pressure block structure parameters (initial flow area around the ball valve) on the velocity field, pressure field, fuel gas phase volume fraction and drain rate of the control valve. The relationship between the initial flow area around the ball valve on the cavitation strength and unloading rate inside the valve was revealed. The results show that both the reduction of the flow area around the ball valve and the increase of the cavitation intensity inhibit the rate of oil discharge from the control valve. The reduction of the fuel flow area inhibits the expansion of the low-pressure region (0–1 MPa) within the flow layer, thus limiting the development of cavitation. The reduction of the cavitation area increases the fuel flow rate, however, the increase in flow rate increases the cavitation phenomenon, and these changes form a cycle (Reviewer 5. comment 2). The increase in cavitation inhibits the control valve pressure relief rate more significantly than the decrease in the initial flow area around the ball valve. Based on this, a stepped-pressure block model is proposed. The stepped pressure block model can effectively reduce the cavitation strength near the seal and enhance the oil discharge rate of the control valve. The study can provide a reference for the engineering optimization design of high-pressure common rail injector control valves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.